Segunda ley de la termodinámica
Esta ley arrebata la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.
Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.
La aplicación más conocida es la de las máquinas térmicas, que obtienen trabajo mecánico mediante aporte de calor de una fuente o foco caliente, para ceder parte de este calor a la fuente o foco o sumidero frío. La diferencia entre los dos calores tiene su equivalente en el trabajo mecánico obtenido.
Entropía (información)
La Entropía puede ser considerada como una medida de la incertidumbre, y la información tiene que ver con cualquier proceso que permite acotar, reducir o eliminar la incertidumbre; resulta que el concepto de información y el de entropía están ampliamente relacionados entre sí, aunque se necesitaron años de desarrollo de la mecánica estadística y de la teoría de la información antes de que esto deviniera aparente.
La Entropía también es entendida como la cantidad de información promedio que contienen los símbolos usados. Los símbolos con menor probabilidad son los que aportan mayor información; por ejemplo, si se considera como sistema de símbolos a las palabras en un texto, palabras frecuentes como "que", "el", "a" aportan poca información, mientras que palabras menos frecuentes como "corren", "niño", "perro" aportan más información (si de un texto dado borramos un "que", seguramente no afectará a la comprensión y se sobreentenderá, no siendo así si borramos la palabra "niño" del mismo texto original). Cuando todos los símbolos son igualmente probables (distribución de probabilidad plana), todos aportan información relevante y la entropía es máxima.
Finalmente, la entropía de la teoría de la información está estrechamente relacionada con la entropía termodinámica. En la termodinámica se estudia un sistema de partículas cuyos estados X (usualmente posición y velocidad) tienen una cierta distribución de probabilidad, pudiendo ocupar varios microestados posibles (equivalentes a los símbolos en la teoría de la información). La entropía termodinámica es igual a la entropía de la teoría de la información de esa distribución (medida usando el logaritmo neperiano) multiplicada por la constante de Boltzmann k, la cual permite pasar de nats (unidad semejante al bit) a J/K. Cuando todos los microestados son igualmente probables, la entropía termodinámica toma la forma k log(N). En un sistema aislado, la interacción entre las partículas tienden a aumentar la dispersión de sus posiciones y velocidades, lo que causa que la entropía de la distribución aumente con el tiempo hasta llegar a un cierto máximo (cuando el mismo sistema es lo más homogéneo y desorganizado posible), lo que es denominadosegunda ley de la termodinámica. La diferencia entre la cantidad de entropía que tiene un sistema y el máximo que puede llegar a tener se denomina neguentropía, y representa la cantidad de organización interna que tiene el sistema. A partir de esta última se puede definir la energía libre de Gibbs, la que indica la energía que puede liberar el sistema al aumentar la entropía hasta su máximo y puede ser transformada en trabajo (energía mecánica útil) usando una máquina ideal de Carnot. Cuando un sistema recibe un flujo de calor, las velocidades de las partículas aumentan, lo que dispersa la distribución y hace aumentar la entropía. Así, el flujo de calor produce un flujo de entropía en la misma dirección.
Podemos decir entonces que el termino entropia se aplica tanto como una propiedad sistémica en el caso de la teoria de sistemas y una física tomada como el concepto de segunda ley de la termodinámica.
No hay comentarios:
Publicar un comentario